LA CIENCIA DEL SIGLO XX:
CIENCIA, POLÍTICA Y SOCIEDAD

José Manuel Sánchez Ron
Catedrático de Historia de la Ciencia, Universidad Autónoma de Madrid.

Cuando nos aproximamos al final del segundo milenio proliferan las recapitulaciones sobre lo que ha dado de sí el siglo XX. Así, se hahablado, está hablando y continuará hablándose, acerca de cuestiones del tipo de: el arte, la política, la literatura, los movimientos sociales y el siglo XX. Pocas son, no obstante, si es que algunas, las reconstrucciones de nuestra centuria en las que la ciencia ocupa un lugar central. Y, sin embargo, el número e importancia de los descubrimientos científicos llevados a cabo durante los últimos cien años es abrumador. Descubrimientos que no sólo han modificado y profundizado radicalmente nuestro conocimiento de la Naturaleza, sino que también han cambiado literalmente nuestras vidas.
A continuación pasará revista a algunos de los principales desarrollos científicos que se han producido en el siglo XX, procurando no olvidar destacar sus repercusiones sociopolíticas.

I. LA FÍSICA CUÁNTICA

En 1900, pronto va a hacer un siglo, un catedrático de la Universidad de Berlín llamado Max Planck, encontraba, sin proponérselo en absoluto, que la energía que transportan las radiaciones no se distribuía, como se suponía hasta entonces, de manera continua sino de forma discreta, en paquetes energéticos proporcionales a la frecuencia de la radiación. De hecho, el hallazgo fue tan sorprendente que el propio Planck no llegó a realizar afirmaciones tan radicales como las que acabo de efectuar; eso fue algo que tendría que esperar cinco años y a un entonces desconocido físico que trabajaba en la oficina de Patentes de Berna, llamado Albert Einstein. Pero en una ocasión como la presente el adjudicar el mérito a uno o a otro es algo que no importa demasiado; si el señalar que Planck abrió la puerta a un mundo que conduciría a una visión completamente diferente del mundo microscópico, del mundo atómico, como se vino a denominar. Sobre la cuantización (expresión que procede de “cuantos” —trozos—, el término utilizado para describir los paquetes elementales de energía) introducida por Planck se han ido levantando edificios teóricos que nos permiten manejar, y en este
sentido comprender, la naturaleza; sobre todo, pero no únicamente, la naturaleza microscópica y las radiaciones asociadas a ella. Edificios como la mecánica cuántica desarrollada en 1975 por Werner Heisenberg y en 1926, en una versión diferente por Erwin Schrödinger.

Es necesario detenerse un instante en la mecánica cuántica porque nos presenta un primer caso de una teoría física que ha provocado cambios radicales en conceptos aparentemente básicos en nuestros procesos cognitivos, al menos en los utilizados en la indagación científica. La mecánica cuántica no es una teoría causal, esto es, no asegura que después de A siempre viene B (en igualdad de condiciones por supuesto). Lo que nos dice es que sólo es posible asegurar que después de un suceso existe una cierta probabilidad de que tenga lugar otro. Y que esto sucede no por nuestra ignorancia, porque no conozcamos todos los parámetros relevantes para describir los fenómenos que se estudian, sino porque la naturaleza es así, con un grado intrínseco de “indefinición”. La seguridad, la causalidad, que asentó en nuestras conciencias siglos y siglos de indagación científica y filosófica quedó destruida en 1925. Como también quedó destruida la creencia de que podemos observar los objetos físicos de forma cada vez más precisa, según avancen nuestros instrumentos de observación. Tal destrucción tuvo lugar en 1927 cuando, de nuevo, Heisenberg demostró sus célebres “relaciones de incertidumbre”, que afirman que magnitudes como la posición y la velocidad, o la energía y el tiempo, sólo se pueden determinar simultáneamente hasta
ciertos límites de precisión. A partir de este resultado, al final del artículo en el que introduje estas ideas, Heisenberg extraña una conclusión con implicaciones filosóficas de largo alcance: “en la formulación fuerte de la ley causal ‘si conocemos exactamente el presente podemos predecir el futuro’, no es la conclusión, sino más bien la premisa la que es falsa. No podemos conocer, por cuestiones de principio, el presente en todos sus detalles”. La física cuántica nos ha enseñado en definitiva que llega un momento a dimensiones muy pequeñas, en que la realidad se difumina, se hace borrosa aunque no por ello seamos menos capaces de describir mediante teorías científicas cómo se comporta esa realidad.

Y no se trata de elucubraciones teóricas que se comprueban en lugares o situaciones remotas y prácticamente inobservables. La mecánica cuántica, y teorías que la complementan, permiten entender la estabilidad de los átomos, el origen y estructura de las radiaciones que éstos emiten, la formación y orden de los elementos químicos, o de qué constituyentes (también llamados “partículas elementales”) están formados esos elementos. Y también proporcionan la clave para comprender, o han permitido construir, fenómenos o instrumentos más cotidianos, como las células fotoeléctricas o los aparatos electrónicos que utilizan semiconductores del tipo de los ya clásicos transistores y diodos, así como los más modernos y poderosos chips en los que sus elementos (como resistores o transistores) están integrados en un pequeño bloque de material, habitualmente silicio. Volveré a este tema más adelante.
Tampoco podemos olvidar que es gracias a la ciencia y científicos cuánticos que sabemos de la fisión nuclear, descubierta, en el uranio, en diciembre de 1938 por dos alemanes, Otto Hahn y Fritz Strassman. Como es bien sabido, aquel descubrimiento mostró su poder en agosto de 1945, cuando dos bombas que extraían su poder destructivo de ese proceso, de la fisión nuclear, destruyeron las ciudades japonesas de Hiroshima y Nagasaki.

El “poder nuclear” ha marcado de hecho la mayor parte de la segunda mitad de nuestro siglo. No es posible comprender las relaciones internacionales (hasta la fecha) sin tener muy en cuenta la disponibilidad de armamento atómico, un armamento atómico que ha ido perfeccionándose (bombas de hidrógeno, bombas de neutrones, misiles con múltiples cabezas nucleares) gracias al trabajo de científicos e ingenieros.

La energía nuclear ha desempeñado también otro papel destacado: en el mundo civil de la producción de energía. Me estoy refiriendo, naturalmente, a las centrales nucleares destinadas, fundamentalmente, a la producción de energía eléctrica. La primera central electronuclear fue puesta en marcha en 1954 en Obninsk, en la antigua Unión Soviética, y en la actualidad funcionan más de 400. Aquel mismo año de 1954 entró en funcionamiento el primer submarino nuclear, el Nautilus, de la marina estadounidense. Las perspectivas para la energía nuclear eran entonces tan halagüeñas
que, también en 1954, Lewis Strous, un financiero convertido en director de la en aquel momento todopoderosa Atomic Energy Commission estadounidense, dibujaba un horizonte que a lo más tardaría unos quince años, en el que «no será excesivo esperar que nuestros hijos disfruten en sus casas de energía eléctrica demasiado barata como para ser medida en el contador; en el que sabrán de hambrunas regionales endémicas en el mundo únicamente a través de los libros de historia; en el que viajarán sin esfuerzo por los mares o bajo ellos y por el aire con un mínimo de peligros y a grandes velocidades; y en el que gozarán de una expectativa de vida mucho más larga que nosotros».

Sin embargo, semejantes previsiones no se han cumplido. En la mente de todos está que la producción de energía, un bien cada vez más escaso y que lo será más aún en el futuro, mediante procesos de fisión nuclear se encuentra en franca decadencia, debido a los problemas derivados del poder contaminante de sus desechos. Y en lo que se refiere a la esperanza de la más limpia fisión nuclear, que utiliza mecanismos del tipo de los que se dan en el interior de las estrellas, a pesar de extensivas investigaciones sólo ha tenido éxito para la producción de armas atómicas más poderosas, las bombas de hidrógeno no para la producción controlada de energía. El siglo XXI tendrá la palabra en este apartado.
II. INTERLUDIO QUÍMICO

Acabo de referirme, a propósito de la energía nuclear y la II Guerra Mundial, a los beneficios que el desarrollo de las guerras recibió de la ciencia. En realidad, el caso de las bombas atómicas es un ejemplo más, aunque especialmente espectacular y dramático, de una relación que se ha mostrado particularmente fecunda a lo largo del presente siglo. Merece la pena, en este sentido, recordar otro caso, que tiene que ver con la química y con la I Guerra Mundial.

Todos sabemos que Alemania pasó a ser una gran potencia mundial a partir de las últimas décadas del siglo XIX. Es menos conocido que entre las razones que justifican tal hecho se encuentra, y de manera prominente, su posición de liderazgo en el dominio de la química orgánica.

Y fue ese liderazgo el que explica el que pudiese superar el aislamiento a que se vio sometida durante la I Guerra Mundial conocida como la Gran Guerra mientras no hubo necesidad de numerarlas. Aislamiento para, por ejemplo, importar abonos nitrogenados.

Las plantas, recordemos, necesitan grandes cantidades de nitrógeno para crecer. Pero aunque el aire contiene cantidades de N₂ en principio ilimitadas no puede ser directamente aprovechado por las plantas, obteniéndolo solamente aquellos vegetales (principalmente legu-
minosas) que conviven simbióticamente con ciertas baterías capaces de convertir el nitrógeno atmosférico en amoníaco (NH₃). Por ello, en la agricultura se necesita recurrir a abonos nitrogenados, más aún cuando se busca aumentar el primero de cosechas anuales.

En 1913, un año antes de que comenzase la Gran Guerra, Alemania consumía 200.000 toneladas de nitrógeno al año, de las que 110.000 eran importadas en forma de nitrito de Chile. Entre mayo de 1921 y abril de 1922, Alemania con una extensión geográfica menor que en 1913, consumió 290.000 toneladas, y toda esa cantidad fue producida dentro de su territorio. ¿Cómo fue posible?

La combinación directa de nitrógeno e hidrógeno para formar amoníaco había recibido atención mucho antes de 1914. En 1840, el francés H. V. Regnault había estudiado la reacción, pero sin mayor éxito. Sólo cuando se la examinó desde el punto de vista de los principios termodinámico se vio que podía llegar a ser explotable comercialmente. Los estudios del químico-físico Walther Nernst fueron continuados por Fritz Haber, entonces profesor de Electroquímica en Karlsruhe, quien, junto a Robert le Rossignol, logró sintetizar amoníaco en 1908 utilizando osmio y uranio como catalizadores, a presiones muy altas y temperaturas moderadas. El 2 de julio de 1909, se realizó una demostración del proceso a Carl Bosch y A. Mittasch de la Badische Anilin- und Soda-Fabrik (BASF), en la que se obtuvieron unos cientos de gramos de amoníaco líqui-
do. Cuatro años más tarde, y después de que Haber hubiese vendido el proceso a la compañía Bosch, lograba superar todos los obstáculos que fueron surgiendo para convenir un procedimiento que era esencialmente académico, en uno con el que se pudiese producir amoniaco en cantidades industriales. Este proceso, denominado de Haber-Bosch, todavía utilizado en su esencia en la actualidad, fue esencial para que Alemania pudiese sobrevivir durante los años de guerra (más aún, si tenemos en cuenta que el amoniaco es un ingrediente importante en la producción de algunos explosivos). La ciencia servía a la sociedad, inicialmente en tiempos de guerra, que fue cuando la necesidad se hizo más urgente, luego en tiempos de paz.

No ha sido ésta, por supuesto, la única intervención destacada de la química en nuestro siglo. Vivimos rodeados de artillugios y procesos químicos. Pero como ahora me estoy centrándome básicamente en aquellos logros más llamativos y novedosos, tengo que reducir drásticamente lo que diré sobre la química, que aunque ha experimentado un desarrollo gigantesco no ha sufrido modificaciones tan radicales en sus fundamentos como otras ciencias como, en particular, la física o la biología.

III. RELATIVIDAD Y COSMOLOGÍA

La otra gran revolución conceptual que ha contemplado la física de nuestro siglo ha sido la asociada a
las teorías especial y general de la relatividad desarrolladas en, respectivamente 1905 y 1915 por la misma persona: Albert Einstein.

Se trata de dos teorías diferentes por mucho que tengan relación. La primera, la especial, impone condiciones a la descripción de todos los fenómenos físicos, mientras que la segunda, la general, es únicamente una teoría (la más precisa de que disponemos) de la fuerza gravitacional. Pero por encima de sus diferencias, que no es este el momento de insistir en ellas, la física relativista introducida por Einstein, el gran genio de la ciencia de nuestro siglo, ha cambiado de forma radical —al igual que, como vimos, hizo la física cuántica— algunas de las categorías más básicas con las que organizamos nuestra descripción de los fenómenos naturales. Así, desde 1905 tenemos que aceptar, contrariamente a lo que durante siglos parecía indicar la experiencia, que la percepción de cómo transcurre el tiempo, o el valor de las distancias, es algo que depende del estado de movimiento de quien realiza las mediciones. Decimos, en este sentido, que el espacio y el tiempo son relativos. Y hemos comprobado que semejante "relatividad" se enmarca de manera natural en un marco geométrico en una geometría, de cuatro dimensiones, que une espacio y tiempo: el espacio-tiempo. Un espacio-tiempo al que la relatividad general, la gravitación da, además, curvatura, le hace dejar de ser plano. Tenemos que aceptar que vivimos en un mundo, espacio-temporal similar a una superficie cuadridimensional curva que se deforma constantemente según se modifi-
ca su contenido en materia y energía, y no en un espacio tridimensional plano.

Con la relatividad general podemos explicar fenómenos de los que la teoría de la gravitación universal de Isaac Newton no podía dar cuenta, como el movimiento del perihelio de los planetas (de Mercurio en particular) o la curvatura de los rayos de luz en presencia de un campo gravitacional. Y no se acaba ahí la historia: gracias a la teoría propuesta por Einstein en 1915 disponemos de un modelo teórico, de una teoría que encaja perfectamente, por el momento al menos, con lo que observamos sobre el Universo, es decir, sobre la entidad más general que podemos imaginar: Se puede decir que la relatividad general ha permitido crear la cosmología como una ciencia exacta (lo hizo también Einstein, esta vez en 1916).

¿Y qué es lo que observamos sobre el Universo considerado como una entidad en sí misma? En este punto nos encontramos con uno de los avances más llamativos, y ya asumidos, de todo el siglo XX. Con la introducción de las técnicas espectrográficas desarrolladas durante la segunda mitad del siglo XIX, la astronomía se convirtió en astrofísica y la capacidad humana de escudriñar el cosmos aumentó de manera radical. Pronto (hacia el cambio de siglo) comenzaron a construirse —especialmente en Estados Unidos— grandes telescopios que permitían "ver" más lejos. Fue en este contexto en el que terminó esclareciéndose un proble-
ma que había permanecido abierto desde al menos el siglo XVIII: el problema de si nuestra galaxia, la Vía Láctea, agota todo el Universo (es decir si incluye todo el contenido del Universo), o si, por el contrario, existen otras unidades astronómicas (otras galaxias) de naturaleza similar separadas de ella por grandes distancias. Se puede decir que este largo debate terminó en 1924 gracias a las observaciones realizadas con el telescopio de 2,5 metros del observatorio de Monte Wilson, en California, por un astrofísico estadounidense que al principio iba para abogado: Edwin Hubble.

Y no fue ésta la única aportación “sensacional” de Hubble. En 1931 fue capaz de demostrar la existencia de una relación extremadamente importante entre la velocidad con que se mueven las galaxias y las distancias que las separan, concluyendo que cuanto más alejadas se encuentran, más rápidamente se alejan entre sí. La interpretación más inmediata, interpretación que nos ha acompañado desde entonces, es que el universo se encuentra en expansión. Y si el universo se expande, es difícil no concluir que debió existir en el pasado (estimado en la actualidad en unos quince mil millones de años) un momento en el que toda la materia habría estado concentrada en una minúscula extensión, acaso en un punto del que habría surgido el Universo en un gran estallido, en un “Big Bang”, según la afortunada expresión introducida por Fred Hoyle en un programa radiofónico de la BBC.
Esta idea según la cual el Universo en un sistema jerarquizado en unidades llamadas galaxias que se alejan continuamente entre sí, se encuentra instalada tan sólidamente en nuestras mentes que es difícil darse cuenta de que data de hace aproximadamente setenta años. Es, por tanto, una herencia, creemos que duradera, del siglo XX.

Y no hemos progresado únicamente en la comprensión de la dinámica del conjunto del Universo, también en los objetos que lo pueblan. Objetos, antes de nuestro siglo insospechados, como estrellas de neutrones, púlsares (estrechas de neutrones en rotación), cuásares (núcleos hiperactivos de galaxias lejanas), supernovas o agujeros negros, todavía sujetos a controversia, pero sobre cuya realidad existen cada vez más pruebas. Como el objeto denominado en la jerga astronómica Cygnus X-1, una fuente de rayos X en la constelación del Cisne con una intensidad diez mil veces superior a la de la radiación luminosa del Sol, y a la que no ha sido posible asociar ningún objeto detectable por medios ópticos. Cygnus X-1 forma un sistema binario con una super gigante azul, que pesa unas veinte veces más que el Sol y que sí es visible con telescopios. Del movimiento de esta super estrella se puede deducir la masa aproximada de su acompañante, masa que resulta ser de entre seis y ocho veces la masa del Sol. No existe, según la física que conocemos, ningún cuerpo estelar que pueda soportar semejante masa con las dimensiones que parece tener ninguno, salvo un agujero negro, objetos que "engullen" toda la masa que se aproxima a sus
alrededores, conduciéndola a un punto donde, aparentemente, desaparecen.

De hecho nos encontramos en una época que augura que los descubrimientos cósmicos continuarán en el futuro. El desarrollo de la tecnología espacial está dando origen a instrumentos de observación (el más conocido en la actualidad es el telescopio espacial “Hubble”) con poderes de detección antes insospechados. ¿Qué nos aguarda en el futuro es algo que naturalmente no podemos saber (en eso reside, precisamente, descubrir) pero hay preguntas que ya hemos formulado y comenzado a intentar contestar, que podrían ser resueltas en cualquier momento del futuro. Y entre esas preguntas ya planteadas, ninguna me parece tan fundamental como la de si hay vida inteligente en otros lugares del Universo. En la última década, las ciencias espaciales han demostrado que existen sistemas planetarios asociados a estrellas (además del caso del Sol). Y si existen esos planetas, parece natural suponer que en algunos también se haya desarrollado vida. Ahora bien, aunque la biología que se ocupa del problema del origen de la vida no descarta, en modo alguno, que en entornos lo suficientemente favorables las combinaciones de los deferentes elementos deban producir, con gran probabilidad, debido a procesos sinérgicos, vida, esa vida no tiene porque ser vida inteligente como la humana. La biología evolucionista, apoyada en los registros geológicos, nos ha mostrado que la especie humana es poco menos que producto del azar evolutivo. Si, por ejemplo, hace 65 millones de años no hubiese chocado
contra la Tierra, a una velocidad de aproximadamente treinta kilómetros por segundo, un asteroide o un cometa (todavía no se sabe con certeza) de unos diez kilómetros de diámetro, produciendo una energía equivalente a la que librarían cien millones de bombas de hidrógeno, entonces acaso no habrían desaparecido (no, desde luego, entonces) una cantidad enorme de especies vegetales y animales, entre las que se encontraban los dinosaurios, que no dejaban prosperar a los, entonces, pequeños mamíferos que con el paso del tiempo terminarían produciendo, mediante procesos evolutivos, especies como la nuestra.

Precisamente por semejante aleatoriedad es por lo que no podemos estar seguros de que exista en otros planetas, en nuestra o en otra galaxia, vida inteligente que trate, o haya tratado, de entender la naturaleza construyendo sistemas científicos, y que también se haya planteado el deseo de comunicarse con otros seres vivos que puedan existir en el Universo. Aun así, y como decía, desde hace tiempo existen programas de investigación que rastrean el universo buscando señales de vida inteligente. Programas como el denominado SETI, siglas del “Search of Extra-Terrestrial Intelligence” (“Búsqueda de inteligencia Extraterrestre”), que en la actualidad está utilizando receptores con 250 millones de canales, que realizan alrededor de veinte mil millones de operaciones por segundo.
IV. PODER DE CÁLCULO

"Veinte mil millones de operaciones por segundo", acabo de decir. Este dato no es sino una manifestación más de un fenómeno que ha cambiado nuestro mundo en las últimas décadas Me estoy refiriendo a la capacidad de cálculo y manejo de información.

Cuando estaba refiriéndome a la resolución cuántica, he mencionado el transistor, un componente electrónico hecho de material semiconductor, que puede regular una corriente que pasa a través de él y también actuar como amplificador. El transistor que, al contrario que los tubos de vacío que le precedieron, necesita cantidades muy pequeñas de energía para funcionar, fue desarrollado por John Bardeen, William Schockley y Walter Brattain en 1947 mientras trabajaban en el departamento de física del estado sólido de los Laboratorios Bell el laboratorio industrial de investigación, asociado a ATT (American Telephone and Telegraph) y Western Electric, más grande del mundo.

Hoy los transistores desempeñan funciones básicas en, por ejemplo, los billones de microprocesadores que controlan motores de coche, teléfonos celulares, misiles, satélites, tuberías de gas, hornos de microondas, computadores o aparatos para escuchar discos compactos (en 1997, se fabricaban 500 millones de transistores, cada segundo), pero al principio los transistores no representaron un gran negocio: eran caros y no funcio-
naban demasiado bien. De hecho, su primera utilización fue en aparatos para mejorar la audición. Gradualmente fueron introduciéndose en otros aparatos, como radios portátiles (a las que muchos todavía llamamos, impropiamente, transistores) y televisores. Aún así, este tipo de mercado no sirve para explicar lo que realmente ocurrió.

En donde el transistor fue verdaderamente bien recibido fue en las Fuerzas Armadas estadounidenses. Su pequeño tamaño y escaso consumo energético encajaban magníficamente con el programa de miniaturización de equipos militares que comenzó a principios de la década de los 50. Entre 1955 y 1961, el Departamento de Defensa invirtió 66 millones de dólares en programas para desarrollar las capacidades del transistor. La industria respondió desarrollando en 1954, el transistor de silicio que podía funcionar a temperaturas mucho más altas que los anteriores, que empleaban otro semiconductor, germanio. El transistor de silicio fue preferido para aviones y misiles teledirigidos, a pesar de que eran mucho más caros. Pero el avance más importante llegó en 1960, cuando se introdujeron técnicas con las que se producían láminas de material semiconductor (silicio, especialmente) que condujeron a los célebres chips, y que permitían fabricar transistores mucho más seguros. Con estas técnicas, en 1958-59 se consiguió que los transistores dejasen de ser componentes específicos que había que unir a un circuito; se consiguió, en definitiva, producir circuitos integrados
en los que diversos componentes de un circuito podían unirse en la misma pieza de material semiconductor.

Al contrario que los Laboratorios Bell, las industrias que desarrollaron el transistor de silicio y el circuito integrado (Texas Instruments) y los procesos planos (Fairchild Semiconductor) no tenían nada que ver con la industria electrónica, que veían el nuevo componente como un substituto de los tubos electrónicos de vacío. Y por ello buscaron nuevos escenarios a los que llevar sus nuevos transistores. Escenarios como las calculadoras, en las que Texas Instruments desempeñó (como IBM) un papel dominante durante algún tiempo.

Hasta la llegada de los transistores y circuitos integrados, las máquinas de calcular, los computadores, utilizados eran gigantescos amasijos de componentes electrónicos. Durante la II Guerra Mundial se construyó uno de los primeros, el Electronic Numerical Integrator and Computer, Computador Integrador Numérico Electrónico, también conocido por sus siglas inglesas, ENIAC. Tenía 18.000 tubos electrónicos, unidos por miles de cables, y consumía 174 kilowatios. Podemos considerarlo el paradigma de la primera generación de computadores. Con los transistores llegó, a comienzos de la década de los 60, la segunda generación, y a finales de esa misma década, gracias a los circuitos integrados, la tercera. Hoy nos encontramos en la cuarta generación con computadoras que utilizan microprocesadores y refinados lenguajes de programación.
Gracias a todos estos desarrollos nos encontramos sumergidos de lleno en un mundo pleno de computadoras que realizan a velocidades y fiabilidades extraordinarias todo tipo de funciones y sin las cuales nuestra vida sería muy diferente. Y nada de esto, es muy importante destacarlo, se habría producido sin los resultados obtenidos en una rama de la física, la física del estado sólido (también denominada de la materia condensada)

V. EL PLANETA TIERRA Y LA CIENCIA

Hasta el momento me he estado refiriendo a desarrollos científicos que han hecho que tengamos que modificar sustancialmente nuestras ideas sobre conceptos epistemológicos fundamentales o sobre qué es el Universo y que, además, han terminado suministrando objetos que han cambiado nuestras vidas. Pero ¿y la Tierra, ese pequeño planeta azul sin el cual no habría lugar a hablar de nuestras vidas”? ¿Nos ha aportado algo nuevo la ciencia al conocimiento de la Tierra?

Sería, desde luego, muy raro que no lo hubiera hecho. Cuando se aproxima el final del segundo milenio sabemos de los planetas que forman con el nuestro el sistema solar incomparablemente más de lo que conocíamos al final del siglo XIX. Hemos sido capaces, incluso de explorar (con sondas espaciales con la “Voyager. 2”) Júpiter y sus dos lunas, Io y Europa
identificando zonas como Loki Patera, una mancha oscura en forma de media luna situada en Io, y que se cree es un lago de azufre líquido cuya superficie está helada. Nos hemos acercado a Saturno y a objetos que giran en torno a él, como Mimas, un mundo helado de tamaño reducido, de unos 400 kilómetros de diámetro, que posee una superficie con gran cantidad de cráteres, incluyendo uno gigantesco de 130 kilómetros de diámetro, bautizado como Herschel. O Hiperión, otro satélite de Saturno, de 400 kilómetros de ancho, cuya irregular geometría demuestra que se trata de un fragmento de otro objeto mucho mayor. Otras sondas no han viajado tan lejos, pero sí descubierto mundos antes desconocidos, como la sonda “Magellan”, que se sumergió en nuestro vecino, Venus, atravesando su densa atmósfera, que incluye una niebla de ácido sulfúrico concentrado que se extiende hasta unos 45 kilómetros de altura. A partir de ese momento, el cielo venusiano es limpio y de gran visibilidad, pero no por ello la situación es similar a la terrestre: la presión y la temperatura aumentan según se descende y al llegar al suelo la presión corresponde a la que impera en la Tierra a miles de metros por debajo del nivel del mar, y con unas temperaturas extremadamente altas.

Así que si hemos podido averiguar cosas como estas, ¿cómo es que no íbamos a haber mejorado nuestro conocimiento de nuestro propio mundo, la Tierra? Un avance especialmente importante ha sido el abandono de la teoría según la cual las distintas partes de la Tierra han permanecido esencialmente fijas unas con res-
pecto a otras, salvo los desplazamientos verticales producidos por el enfriamiento del globo terráqueo. En su lugar, se ha desarrollado la denominada teoría de la "tectónica de placas". Esta teoría se formuló durante la década de los 60, habiendo sido precedida por otra, más primitiva e inexacta, pero bastante popular: la teoría de la deriva de los continentes, formulada en 1915 por el meteorólogo, geofísico, astrónomo y explorador polar, Alfred Wegener.

De acuerdo con la tectónica de placas, no son sólo los continentes los que se mueven, sino zonas más grandes de la corteza terrestre ("placas"), que incluyen partes de los océanos al igual que masas continentales. Las placas —seis grandes y varias más pequeñas— se mueven sobre estratos más profundos, siendo la fuerza motriz corrientes lentas de magma viscoso.

El océano Atlántico puede servir para ilustrar la nueva imagen movilista: el continente americano estuvo unido en el pasado a Euro-África, pero ambos comenzaron a separarse durante el Mesozoico (hace entre 245 y 265 millones de años). Hasta aquí nada difiere de las ideas de Wegener; pero para éste la dorsal Atlántica, la cadena montañosa situada en mitad del océano, y en cuyo centro existe un profundo valle, o si se prefiere, una hendidura o grieta, no representaba nada en especial, simplemente marcaba el lugar de separación de los continentes. Para la tectónica de placas, sin embargo, esa dorsal significa otra cosa: es una zona dotada de,
podríamos decir, vida; la frontera entre dos placas, por donde se crea constantemente nuevo fondo oceánico como fruto del flujo de magma que surge de las profundidades de la corteza terrestre. Cuando dos placas chocan (gradual y lentamente, por supuesto) entre sí, las posibilidades principales son dos: la placa más densa puede verse forzada a sumergirse por debajo de la otra. La masa que desciende se funde formando un magma, que puede ascender de nuevo a la superficie a través de grietas formando volcanes. Pero si las dos placas son compa rables no tiene lugar ese proceso; en su lugar, la corteza se arruga de forma gradual, formándose cadenas montañosas, como el Himalaya, los Andes o las Montañas Rocosas (existe otro proceso: a veces, dos placas se deslizan entre sí; el caso más conocido es el de la falla de San Andrés, en California, en donde el movimiento de las placas toma en algunas ocasiones la forma de un "latigazo" repentino, que provoca un terremoto.)

La Tierra, nuestra vieja Tierra (su edad es de unos 4.600 millones de años), se ha convertido así en un escenario dinámico. Lejos de ser un planeta inerte, salvo por esporádicos terremotos o erupciones volcánicas, de su interior surge continuamente nueva materia (los fondos oceánicos son muy jóvenes a menudo de menos de 200 millones de años, mientras que lo normal es encontrarse territorios —Australia, África o Groenlandia— con sedimentos de edades de entre 3.500 o 3.800 millones de antigüedad).
VI. OTRAS VISIONES DE LA TIERRA

Pero la ciencia no sólo nos ha enseñado estos aspectos de la estructura de la Tierra, también nos ha mostrado la situación en que se encuentra debido al desarrollo científico-tecnológico-industrial-económico. Gracias al conocimiento científico hemos podido averiguar que entre los grandes problemas que afectan a la humanidad se encuentran los medioambientales; problemas, posibles o confirmados, como el efecto invernadero, la impurificación de la atmósfera y de las aguas por los contaminantes industriales, la lluvia ácida, los vertidos de petróleo en mares y océanos, los aparentes cambios climáticos, los agujeros en la capa de ozono, la expansión gradual de la desertización, el derretimiento de los casquetes polares o la desaparición de selvas tropicales.

Entre las previsiones actuales, las hay que sostienen que en el momento presente se está produciendo una elevación del nivel de los océanos que conducirá a que hacia finales del siglo XXI éste podría ser entre 15 y 95 centímetros superior al actual. Partes importantes de Bangladesh o Florida, por ejemplo, se verían anegadas. Y al elevarse la temperatura del agua es más que probable que se intensifiquen las tempestades y ciclones en zonas costeras. Los hay, asimismo, que defienden —pero seguramente es menos probable— que podrían fundirse partes de los hielos del oeste de la Antártida, produciendo elevaciones en el nivel marino de hasta 6
metros. Por supuesto, todo esto está todavía lejos de un derretimiento total de las superficies heladas del planeta, que si se produjese conducirían a elevaciones marinas de entre 60 y 70 metros, algo sólo podría ocurrir si el calentamiento presente se prolongase durante algunos miles de años.

Con relación a la desaparición de especies, se estima que están desapareciendo al ritmo de, aproximadamente, cuatro cada hora, la mayoría pequeñas plantas e insectos que viven en las selvas tropicales que sucumben al fuego, el hacha o los bulldozers. Un ritmo varias miles de veces mayor que el que se produce de manera natural. El Banco Mundial ha calculado que la pérdida de aves y mamíferos se ha triplicado en los últimos doscientos años, siendo en la actualidad cincuenta veces mayor que el que tiene lugar de forma espontánea. Hace dos o tres años se calculaba que en el año 2000, el número de especies que desaparecerían anualmente habría alcanzado el de 50.000. Estamos transformando ecosistemas terrestres en monocultivos agrícolas, creando inmensos hábitats de cemento, acero, plástico y cristal desprovistos prácticamente de biodiversidad, de vida que no sean los 6.000 millones de seres humanos que pueblan la Tierra. Hace diez mil años, en los albores de la agricultura, sólo había 5 millones; 250 en la época del nacimiento de Cristo. En el año 2011, la estimación es que habremos llegado a los 7.000 millones, 9.400 en el 2050, de los que el 8.5 por ciento (frente al 13 actual) vivirán en Europa y el 22 por ciento en África (13 hoy).
La ciencia está poniendo sus recursos al servicio de controlar el estado del planeta. No se puede luchar contra aquello que se desconoce, y la investigación científica es indispensable para averiguar la causa última de los desequilibrios que modifican el estado del planeta. Como señalé, si hablamos de problemas como "agujero de la capa de ozono", si tenemos consciencia de él, es porque la investigación científica nos lo ha mostrado (no es algo que se pueda observar directamente), como también nos ha enseñado posibles formas de combatirlo. En este sentido, hay que señalar que fue con la información suministrada por científicos y técnicos, que el Protocolo de Montreal, firmado en 1987, bajo el patronazgo de la ONU, recomendó la disminución en el empleo de gases fluorocloro carbonados. Y así, entre 1984 y 1992, la utilización de estos gases, al igual que otros con propiedades similares, ha disminuido en cerca del 90 por ciento en los países de la OCDE, la organización para la Cooperación y Desarrollo Económica. Si esta disminución se extendiera a todo el mundo, la cantidad de ozono volvería a su nivel primitivo hacia el 2050. Tardaría, pero llegaría.

Es necesario, y sin duda se hará, avanzar más en el control tecnocientífico de nuestro planeta. Recurriendo, por ejemplo, a la ciencia y tecnología espacial se puede, debe y ya se hace en alguna medida (recordemos la misión que hace apenas unas semanas llevó a cabo la NASA utilizando uno de sus transbordadores espaciales, aunque también hay que recordar que se trató de una misión mitad civil mitad militar, y que consecuen-
mente no todas sus observaciones serán de libre disposición), vigilar permanentemente lo que se podría considerar como la anatomía, fisiología y patología de la Tierra. Existen instrumentos que pueden realizar medidas precisas de las concentraciones de clorofila en el mar, datos que nos pueden ayudar, a su vez, a deducir la densidad de vida que existe en ellos; podemos también determinar con exactitud, desde el espacio, la distribución de bosques, granjas, desiertos, poblaciones, elementos químicos que existen en las capas superiores e inferiores de la atmósfera, o movimientos de los bloques de hielo en los casquetes polares. Podríamos, en definitiva, al controlar el planeta, identificar las primeras señales de problemas ecológicos.

VII. BIOLOGÍA MOLECULAR

En las décadas de los años 50 ó 60, en pleno vigor y prácticamente ilimitadas esperanzas en las posibilidades que ofrecía la física, pocos, si es que alguno, podrían haber sospechado que a partir de comienzos de los 70 se iba a producir una nueva revolución científica, ajena a la física, que iba a abrir horizontes científicos y sociales antes completamente insospechados. Me estoy refiriendo a la biología molecular.

Desde diversos puntos de vista, y aunque la siguiente afirmación signifique una indudable simplificación, todo comenzó en 1953, el año en el que James Watson y
Francis Crick descubrieron en el laboratorio Cavendish de Cambridge la estructura geométrica (en doble hélice) del ácido desoxirribonucleico o ADN; es decir, la estructura de la macromolécula que contiene, en forma químicamente codificada, toda la información necesaria para construir, controlar y mantener un organismo vivo.

Si pudiésemos extender el ADN de una célula humana, formaríamos un hilo de unos tres metros de longitud. Y si tenemos en cuenta el número de células que contiene, todo el ADN de una persona formaría un hilo de una longitud más de veinte veces la distancia que separa al Sol de la Tierra. El “genoma” (conjunto de instrucciones que permiten construir un organismo) humano se encuentra en esos gigantescos hilos. Los cromosomas —los, recordemos, elementos básicos en los mecanismos hereditarios— son en realidad segmentos de ADN. Dentro de esos segmentos se identifican los genes, trozos de ADN, que tienen funciones específicas conocidas. Se cree que en los seres humanos existen entre 50.000 y 100.000 genes diferentes.

Pequeños cambios en la estructura química de los genes pueden tener consecuencias muy importantes. Como la anemia falciforme, una enfermedad hereditaria bastante frecuente. Los hematíes de las personas con este tipo de genes, sufren grandes alteraciones de formas cuando se exponen a bajas concentraciones de oxígeno. Como consecuencia, a los hematíes les es entonces muy difícil pasar a través de los capilares sanguíneos, con el
resultado de grandes dolores e incluso la muerte (por razones evidentes, en algunas academias aéreas —la de Estados Unidos, por ejemplo— se efectúan exámenes genéticos para detectar esta anemia). Ya se conocen más de cuatro mil defectos en los que un solo gen provoca trastornos en los seres humanos.

Estas nociones y ejemplos, tan sencillos tan elementales, sirven perfectamente para apreciar con claridad la importancia de la biología molecular. Con ella es posible plantear la tarea de verificar el defecto genético responsable de enfermedades (se estima que un recién nacido de cada trescientos es portador de alguna anomalía genética). En 1986, por ejemplo, un equipo de investigadores norteamericanos identificó el defecto genético responsable de un tipo de distrofia muscular. Tres años después, un grupo de biólogos anunció el descubrimiento de la situación del gen que, cuando sale defectuoso, produce la fibrosis quística, una enfermedad que afecta a los pulmones, páncreas y otros órganos.

A partir de entonces, los avances en esta dirección son constantes. En 1993, por ejemplo, se localizó el gen de la corea de Huntington, un trastorno que produce una degeneración progresiva del cerebro, que viene acompañada de la aparición de fuertes movimientos incontrolados y que conduce, inevitablemente por el momento, a la muerte (habitualmente ataca a las personas de alrededor de 35 años).
De esta manera será posible (ya lo es, al parecer, en algunos casos) identificar a los padres que pueden transmitir un defecto génico o hacer pruebas a la mórula —el primer esbozo del embrión— para comprobar si el ser humano que surgirá de él será portador o no de la anomalía.

Como era de esperar, los avances realizados en el campo de la biología molecular no se han limitado a la identificación de genes y sus consecuencias en la vida de los seres vivos, los humanos entre ellos, también han irrumpido en el ámbito de la terapia y transformación de esa vida.

En cuanto a la terapia génica, un campo éste todavía en sus inicios, diré simplemente que, básicamente, su objetivo principal es aportar un gen normal para paliar la insuficiencia de un gen, y que existen dos tipos de esta terapia: la terapia génica somática, que no se transmite a la descendencia, y la terapia de células germinales, que sí se transmite. Esta última (biotecnología) se aplica con cierta extensión en la actualidad a ratones y animales de granja. Su utilización con la especie humana no es técnicamente imposible, y es una de las posibilidades para el futuro. El riesgo de que pueda conducir o no a prácticas eugénicas es, por supuesto, otra cosa.

La "biotecnología", otro de cuyo nombres es el de "ingeniería genética", es una disciplina íntimamente li-
gada a la biología molecular (existen sin ir más lejos investigaciones que por un lado pueden servir para describir de manera más profunda las relaciones evolucionistas entre las diferentes especies animales y, por otro, para producir especímenes animales diseñados para cumplir determinados fines industriales). Y está experimentando un desarrollo particularmente vigoroso en este fin de siglo. El fin de la biotecnología e ingeniería genética es "unir genes"; esto es, sustituir un segmento de ADN de una célula por uno de otra (al organismo que surge de este proceso se le denomina transgénico). Pero no fue hasta finales de la década de los 60 y comienzos de los 70 cuando comenzaron a desarrollarse las técnicas necesarias para manipular el ADN en tubos de ensayos. Debido a ser las moléculas de ADN de gran tamaño, cuando se las intentaba fragmentar los cortes se producían al azar, con lo cual se descomponían la información genética contenida en ellas de forma tal que era prácticamente imposible de recomponer. Por aquellos años (finales de los 60) se encontraron herramientas moleculares que podían resolver muchos de esos problemas: en 1967 se aisló la enzima ligasa que puede unir cadenas de ADN; en 1970 se hizo lo propio con la primera enzima capaz de cortar por sitios determinados las moléculas de ADN. En 1972 se crearon (en la Universidad de Stanford) las primeras moléculas de ADN recombinante. Se puede decir que ya estamos en la era del "ADN recombinante", era que está posibilitando innovaciones especialmente llamativas.
El desarrollo de la biología molecular permitirá —de hecho ya ha comenzado a hacerlo— disponer de informaciones que se pueden utilizar en numerosas direcciones. Puede, por un lado, conducir a productos y procesos que sean nuevos, mejores y más baratos. Productos farmacéuticos y de diagnóstico para los seres humanos y para los animales, semillas, plantas (las hoy famosas plantas transgénicas), fertilizantes, aditivos para la alimentación o bacterias que eliminen o degraden agentes contaminantes (como el petróleo).

Pero también puede conducir a otras consecuencias menos deseadables. Recurriendo de nuevo a la corea de Huntington, la detección de esta enfermedad en un óvulo recién fecundado puede ser utilizada para que la mujer embarazada decida abortar, evitándose de esta manera un problema dramático. Pero pensemos en otro ejemplo que conduce a situaciones muy diferentes. Una familia estadounidense tenía un hijo que padecía de fibrosis quística. El joven recibía atención médica a través de un seguro privado. Cuando su madre quedó embarazada de nuevo, se le exigió someter al feto a una prueba genética para averiguar si su hijo padecería el mismo trastorno. El resultado fue positivo, pero la mujer decidió continuar con su embarazo. El seguro se planteó entonces la posibilidad de anular o limitar sus prestaciones a la familia.

Tenemos que darnos cuenta que de lo que se está hablando aquí, en este final de siglo, es una situación
nueva y compleja. Es evidente especialmente dada la naturaleza de la cobertura médica en Estados Unidos, que la compañía de seguros —ésta u otra cualquiera, en distintas o parecidas circunstancias— podía intervenir condicionando muy seriamente las posibilidades de esta familia que, de esta manera, vería limitada gravemente su libertad. ¿Qué hacer en este tan notorio —y en muchos aspectos paradigmático— caso de conflicto de intereses? He aquí uno de los problemas que el desarrollo del conocimiento científico plantea al presente y al futuro, al siglo XXI.

Las ciencias biomédicas nos están enfrentando a una forma nueva de relacionarnos con la ciencia, de plantearnos cuál debe ser el futuro de esta maravillosa habilidad de la especie humana. Una especie humana, por cierto, que se encuentra, ella misma, en el inicio de una nueva era en lo que a su relación con otras facetas de las ciencias biomédicas se refiere. La biología molecular, la biotecnología e ingeniería genética avanzan de tal forma que es más que posible que pronto acumulen suficiente conocimiento concerniente a las bases genéticas de la conducta social como para producir técnicas para alterar no sólo genes sino complejos de genes. Entonces tendremos los instrumentos para producir cambios evolutivos programados en nuestra propia naturaleza.